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SOLUTIONS

Problem 1. We consider the polynomial P : C → C that is given by

∀ z ∈ C : P (z) = 2z4 + 2z3 + 7z2 + 2z + 5.

Furthermore, we consider the differential equation

(∗) d4x

dt4
+

d3x

dt3
+

7

2

d2x

dt2
+

dx

dt
+

5

2
x = 0

and the differential equations

(∗∗) d4x

dt4
+

d3x

dt3
+

7

2

d2x

dt2
+

dx

dt
+

5

2
x = 27et

and

(∗ ∗ ∗) d5y

dt5
+

d4y

dt4
+

7

2

d3y

dt3
+

d2y

dt2
+

5

2

dy

dt
= 0.

(1) Show that the complex numbers i and −i are roots of the polynomial
P, i. e. P (i) = 0 and P (−i) = 0.

Solution. We easily find that P (i) = P (−i) = 0. Hence i and −i are
roots of the complex polynomial P.

(2) Solve the equation
P (z) = 0.

Solution. Using polynomial division we obtain that

∀ z ∈ C : P (z) = (z − i)(z + i)(2z2 + 2z + 5),

and furthermore we find that

2z2 + 2z + 5 = 0 ⇔ z =
−2+

√
4− 40

4
⇔ z = −1

2
+

3

2
i.



Now, we have shown that the polynomial P has the roots:

z1 = i, z2 = −i, z3 = −1

2
+

3

2
i, and z4 = −1

2
− 3

2
i.

(3) Determine the general solution of the differential equation (∗).

Solution. The characteristic polynomial PC of the differential equation
(∗) is PC = 1

2
P, and the characteristic roots are exactly the roots of the

polynomial P . This implies that the general solution of (∗) is

x = c1 cos(t) + c2 sin(t) + c3e
− 1

2
t cos(

3

2
t) + c4e

− 1
2
t sin(

4

2
t),

where c1, c2, c3, c4 ∈ R.

(4) Show that the differential equation (∗) is not globally asymptotically
stable.

Solution. Since the functions cos and sin don’t have any limit as t
is approaching to infinity the differential equation (∗) is not globally
asymptotically stable.

(5) Determine the general solution of the differential equation (∗∗).

Solution. Since the function t → et is not a solution of the homoge-
neous differential equation (∗) we know that the function x̂ = Aet will
be a solution of the inhomogeneous differential equation (∗∗) for some
value of the constant A.

We have that
x̂
′
= x̂

′′
= x̂

′′′
= x̂

′′′′
= Aet,

and then we find that A = 3.

The general solution of the differential equation is

x = c1 cos(t) + c2 sin(t) + c3e
− 1

2
t cos(

3

2
t) + c4e

− 1
2
t sin(

3

2
t) + 3et,

where c1, c2, c3, c4 ∈ R.

(6) Determine the general solution of the differential equation (∗ ∗ ∗).



Solution. The characteristic polynomial Q : C → C of the differential
equation (∗ ∗ ∗) is given by

∀ z ∈ C : Q(z) = z5 + z4 +
7

2
z3 + z2 +

5

2
z = z

(
z4 + z3 +

7

2
z2 + z +

5

2

)
.

We notice that the roots of Q are

z0 = 0, z1 = i, z2 = −i, z3 = −1

2
+

3

2
i, and z4 = −1

2
− 3

2
i.

From this we find that the general solution of (∗ ∗ ∗) is

y = c0 + c1 cos(t) + c2 sin(t) + c3e
− 1

2
t cos(

3

2
t) + c4e

− 1
2
t sin(

3

2
t),

where c0, c1, c2, c3, c4 ∈ R.

Problem 2. Consider the vector space Rn, where n ∈ N and n ≥ 3. Also
consider the set

S = {x = (x1, x2, . . . , xn) ∈ Rn : x1 > 0 ∧ x2 > 0}.

(1) Show that the set S is an open subset of Rn.

Solution. Let the point a = (a1, a2, . . . , an) ∈ S be arbitrarily chosen.
Then a1 > 0 and a2 > 0. Choose r > 0, such that

r ≤ min(a1, a2).

Then we consider the open ball

B(a, r) = {x = (x1, x2, . . . , xn) ∈ Rn :

√
(x1 − a1)2 + (x2 − a2)2 + . . . (xn − an)2 < r},

and we notice that if x ∈ B(a, r) then

|x1 − a1| < r ∧ |x2 − a2| < r ⇔

a1 − r < x1 < a1 + r ∧ a2 − r < x2 < a2 + r.

Now we know that B(a, r) ⊂ S, and then we have shown that S is
open.



(2) Find the closure S of the set S.

Solution. We claim that

S = {x = (x1, x2, . . . , xn) ∈ Rn : x1 ≥ 0 ∧ x2 ≥ 0}.

Let us consider a point a = (0, a2, . . . , an) where a2 ≥ 0. Let r > 0 be
any positive number. Then we consider the open ball

B1(a, r) = {x = (x1, x2, . . . , xn) ∈ Rn :

√
x2

1 + (x2 − a2)2 + . . . (xn − an)2 < r}.

Now we find that if x = (x1, a2, . . . , an) ∈ B1(a, r) then

x2
1 < r2 ⇔ −r < x1 < r,

and hence a ∈ ∂S. From this fact we easily verify the assertion.

(3) Find the complement CS of the set S and find the boundary ∂(CS) of
this set.

Solution. We see that

CS = {x = (x1, x2, . . . , xn) ∈ Rn : x1 ≤ 0 ∨ x2 ≤ 0},

and then we notice that

∂(CS) = {x = (x1, x2, . . . , xn) ∈ Rn :

(x1 = 0 ∧ x2 ≥ 0) ∨ (x1 ≥ 0 ∧ x2 = 0)},

(4) Is the set CS closed?

Solution. Since the set S is open the complement CS is closed.

Problem 3. We consider the vector valued function f : R2 → R2 given by

∀ (x, y) ∈ R2 : f(x, y) =

(
2xy + ey

ex + 4y2

)
.



(1) Find the Jacobi matrix Df(x, y) of the function f at any point (x, y) ∈
R2.

Solution. We find that

Df(x, y) =

(
2y 2x + ey

ex 8y

)
.

(2) Find the determinant det Df(x, y) and show that the Jacobi matrix
Df(0, 0) is non-singular.

Solution. We see that det Df(x, y) = 16y2 − ex+y − 2xex and that
det Df(0, 0) = −1. This shows that the Jacobi matrix

Df(0, 0) =

(
0 1
1 0

)

is non-singular.

(3) Prove that there exists a neighbourhood U(0,0) of the point (0, 0) such
that the Jacobi matrix Df(x, y) is non-singular at any point (x, y) ∈
U(0,0).

Solution. Since all four entries of the Jacobi matrix Df(x, y) are
continuous functions, and since Df(0, 0) is non-singular, the assertion
is true.

(4) Find the inverse (Df(0, 0))−1 of the non-singular Jacobi matrix Df(0, 0).

Solution. We find that

(Df(0, 0))−1 =

(
0 1
1 0

)
.

(5) Solve the equation
(

u
v

)
= f(0, 0) + Df(0, 0)

(
x
y

)

with respect to (
x
y

)
.



Solution. We find that
(

u
v

)
= f(0, 0) + Df(0, 0)

(
x
y

)
⇔

(
u− 1
v − 1

)
= Df(0, 0)

(
x
y

)
⇔

(
x
y

)
=

(
0 1
1 0

) (
u− 1
v − 1

)
⇔ x = v − 1 ∧ y = u− 1.

(6) Show that the vector valued function g : R2 → R2 given by the rule

∀ (x, y) ∈ R2 : g(x, y) = f(0, 0) + Df(0, 0)

(
x
y

)

has no fixed points.

Solution. If the point (x, y) were a fixed point of the function g we
would find that

x = y − 1 ∧ y = x− 1 ⇒ x = x− 2 ⇔ 0 = −2.

Problem 4. We consider and the function F : R3 → R given by the rule

∀ (t, x, y) ∈ R3 : F (t, x, y) = y2 + (1 + t2)x.

Furthermore, we consider the functional

I(x) =
∫ 1

0

((dx

dt

)2
+ (1 + t2)x

)
dt.

(1) Show that for every t ∈ R the function F = F (t, x, y) is convex in
(x, y) ∈ R2.

Solution. We find that

∂F

∂x
= 1 + t2 and

∂F

∂y
= 2y,

and that the Hessian matrix of the function F is

F ” =

(
0 0
0 2

)
.

This matrix is positive semidefinite and hence the function F is a convex
function of (x, y) ∈ R2.



(2) Solve the variational problem: Determine the minimum function x∗ =
x∗(t) of the functional I(x) subject to the conditions

x∗(0) = 3 and x∗(1) =
1

24
.

Solution. Since the function F is a convex function of (x, y) ∈ R2 we
know that the given variational problem is a minimum problem.

The Euler differential equation is:

∂F

∂x
− d

dt

(∂F

∂ẋ

)
= 0 ⇔ 1 + t2 − 2

d2x

dt2
= 0 ⇔

d2x

dt2
=

1

2
+

1

2
t2.

Now we find that
dx

dt
=

1

2
t +

1

6
t3 + c1

and that

x =
1

4
t2 +

1

24
t4 + c1t + c2,

where c1, c2 ∈ R.

From the two given conditions

x∗(0) = 3 and x∗(1) =
1

24

we find that c1 = −13
4

and that c2 = 3.

Then we have that

x∗ = x∗(t) =
1

4
t2 +

1

24
t4 − 13

4
t + 3.


