UNIVERSITY OF COPENHAGEN
DEPARTMENT OF ECONOMICS
2nd year of study. 2012 W-2DM ex sol
WRITTEN EXAM. DYNAMIC MODELS
Wednesday, January 18, 2012

SOLUTIONS

Problem 1. We consider the polynomial $P: \mathbf{C} \rightarrow \mathbf{C}$ that is given by

$$
\forall z \in \mathbf{C}: P(z)=2 z^{4}+2 z^{3}+7 z^{2}+2 z+5
$$

Furthermore, we consider the differential equation

$$
\begin{equation*}
\frac{d^{4} x}{d t^{4}}+\frac{d^{3} x}{d t^{3}}+\frac{7}{2} \frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}+\frac{5}{2} x=0 \tag{*}
\end{equation*}
$$

and the differential equations

$$
\begin{equation*}
\frac{d^{4} x}{d t^{4}}+\frac{d^{3} x}{d t^{3}}+\frac{7}{2} \frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}+\frac{5}{2} x=27 e^{t} \tag{**}
\end{equation*}
$$

and
$(* * *) \quad \frac{d^{5} y}{d t^{5}}+\frac{d^{4} y}{d t^{4}}+\frac{7}{2} \frac{d^{3} y}{d t^{3}}+\frac{d^{2} y}{d t^{2}}+\frac{5}{2} \frac{d y}{d t}=0$.
(1) Show that the complex numbers i and $-i$ are roots of the polynomial P, i. e. $P(i)=0$ and $P(-i)=0$.

Solution. We easily find that $P(i)=P(-i)=0$. Hence i and $-i$ are roots of the complex polynomial P.
(2) Solve the equation

$$
P(z)=0 .
$$

Solution. Using polynomial division we obtain that

$$
\forall z \in \mathbf{C}: P(z)=(z-i)(z+i)\left(2 z^{2}+2 z+5\right)
$$

and furthermore we find that

$$
2 z^{2}+2 z+5=0 \Leftrightarrow z=\frac{-2 \pm \sqrt{4-40}}{4} \Leftrightarrow z=-\frac{1}{2} \pm \frac{3}{2} i .
$$

Now, we have shown that the polynomial P has the roots:

$$
z_{1}=i, z_{2}=-i, z_{3}=-\frac{1}{2}+\frac{3}{2} i, \text { and } z_{4}=-\frac{1}{2}-\frac{3}{2} i
$$

(3) Determine the general solution of the differential equation $(*)$.

Solution. The characteristic polynomial P_{C} of the differential equation $(*)$ is $P_{C}=\frac{1}{2} P$, and the characteristic roots are exactly the roots of the polynomial P. This implies that the general solution of $(*)$ is

$$
x=c_{1} \cos (t)+c_{2} \sin (t)+c_{3} e^{-\frac{1}{2} t} \cos \left(\frac{3}{2} t\right)+c_{4} e^{-\frac{1}{2} t} \sin \left(\frac{4}{2} t\right),
$$

where $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbf{R}$.
(4) Show that the differential equation (*) is not globally asymptotically stable.

Solution. Since the functions \cos and sin don't have any limit as t is approaching to infinity the differential equation $(*)$ is not globally asymptotically stable.
(5) Determine the general solution of the differential equation $(* *)$.

Solution. Since the function $t \rightarrow e^{t}$ is not a solution of the homogeneous differential equation $(*)$ we know that the function $\hat{x}=A e^{t}$ will be a solution of the inhomogeneous differential equation $(* *)$ for some value of the constant A.
We have that

$$
\hat{x}^{\prime}=\hat{x}^{\prime \prime}=\hat{x}^{\prime \prime \prime}=\hat{x}^{\prime \prime \prime \prime}=A e^{t},
$$

and then we find that $A=3$.
The general solution of the differential equation is

$$
x=c_{1} \cos (t)+c_{2} \sin (t)+c_{3} e^{-\frac{1}{2} t} \cos \left(\frac{3}{2} t\right)+c_{4} e^{-\frac{1}{2} t} \sin \left(\frac{3}{2} t\right)+3 e^{t},
$$

where $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbf{R}$.
(6) Determine the general solution of the differential equation $(* * *)$.

Solution. The characteristic polynomial $Q: \mathbf{C} \rightarrow \mathbf{C}$ of the differential equation $(* * *)$ is given by

$$
\forall z \in \mathbf{C}: Q(z)=z^{5}+z^{4}+\frac{7}{2} z^{3}+z^{2}+\frac{5}{2} z=z\left(z^{4}+z^{3}+\frac{7}{2} z^{2}+z+\frac{5}{2}\right) .
$$

We notice that the roots of Q are

$$
z_{0}=0, z_{1}=i, z_{2}=-i, z_{3}=-\frac{1}{2}+\frac{3}{2} i, \text { and } z_{4}=-\frac{1}{2}-\frac{3}{2} i
$$

From this we find that the general solution of $(* * *)$ is

$$
y=c_{0}+c_{1} \cos (t)+c_{2} \sin (t)+c_{3} e^{-\frac{1}{2} t} \cos \left(\frac{3}{2} t\right)+c_{4} e^{-\frac{1}{2} t} \sin \left(\frac{3}{2} t\right)
$$

where $c_{0}, c_{1}, c_{2}, c_{3}, c_{4} \in \mathbf{R}$.

Problem 2. Consider the vector space \mathbf{R}^{n}, where $n \in \mathbf{N}$ and $n \geq 3$. Also consider the set

$$
S=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{n}: x_{1}>0 \wedge x_{2}>0\right\}
$$

(1) Show that the set S is an open subset of \mathbf{R}^{n}.

Solution. Let the point $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S$ be arbitrarily chosen. Then $a_{1}>0$ and $a_{2}>0$. Choose $r>0$, such that

$$
r \leq \min \left(a_{1}, a_{2}\right)
$$

Then we consider the open ball

$$
\begin{gathered}
B(a, r)=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{n}:\right. \\
\left.\sqrt{\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}+\ldots\left(x_{n}-a_{n}\right)^{2}}<r\right\},
\end{gathered}
$$

and we notice that if $x \in B(a, r)$ then

$$
\begin{gathered}
\left|x_{1}-a_{1}\right|<r \wedge\left|x_{2}-a_{2}\right|<r \Leftrightarrow \\
a_{1}-r<x_{1}<a_{1}+r \wedge a_{2}-r<x_{2}<a_{2}+r .
\end{gathered}
$$

Now we know that $B(a, r) \subset S$, and then we have shown that S is open.
(2) Find the closure \bar{S} of the set S.

Solution. We claim that

$$
\bar{S}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{n}: x_{1} \geq 0 \wedge x_{2} \geq 0\right\} .
$$

Let us consider a point $a=\left(0, a_{2}, \ldots, a_{n}\right)$ where $a_{2} \geq 0$. Let $r>0$ be any positive number. Then we consider the open ball

$$
\begin{aligned}
& B_{1}(a, r)=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{n}:\right. \\
& \left.\sqrt{x_{1}^{2}+\left(x_{2}-a_{2}\right)^{2}+\ldots\left(x_{n}-a_{n}\right)^{2}}<r\right\} .
\end{aligned}
$$

Now we find that if $x=\left(x_{1}, a_{2}, \ldots, a_{n}\right) \in B_{1}(a, r)$ then

$$
x_{1}^{2}<r^{2} \Leftrightarrow-r<x_{1}<r,
$$

and hence $a \in \partial S$. From this fact we easily verify the assertion.
(3) Find the complement $\mathcal{C} S$ of the set S and find the boundary $\partial(\mathcal{C} S)$ of this set.

Solution. We see that

$$
\mathcal{C} S=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{n}: x_{1} \leq 0 \vee x_{2} \leq 0\right\},
$$

and then we notice that

$$
\begin{gathered}
\partial(\mathcal{C} S)=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{n}:\right. \\
\left.\left(x_{1}=0 \wedge x_{2} \geq 0\right) \vee\left(x_{1} \geq 0 \wedge x_{2}=0\right)\right\},
\end{gathered}
$$

(4) Is the set $\mathcal{C} S$ closed?

Solution. Since the set S is open the complement $\mathcal{C} S$ is closed.

Problem 3. We consider the vector valued function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by

$$
\forall(x, y) \in \mathbf{R}^{2}: f(x, y)=\binom{2 x y+e^{y}}{e^{x}+4 y^{2}} .
$$

(1) Find the Jacobi matrix $\operatorname{Df}(x, y)$ of the function f at any point $(x, y) \in$ R^{2}.

Solution. We find that

$$
D f(x, y)=\left(\begin{array}{cc}
2 y & 2 x+e^{y} \\
e^{x} & 8 y
\end{array}\right)
$$

(2) Find the determinant $\operatorname{det} D f(x, y)$ and show that the Jacobi matrix $D f(0,0)$ is non-singular.

Solution. We see that $\operatorname{det} D f(x, y)=16 y^{2}-e^{x+y}-2 x e^{x}$ and that $\operatorname{det} D f(0,0)=-1$. This shows that the Jacobi matrix

$$
D f(0,0)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

is non-singular.
(3) Prove that there exists a neighbourhood $U_{(0,0)}$ of the point $(0,0)$ such that the Jacobi matrix $D f(x, y)$ is non-singular at any point $(x, y) \in$ $U_{(0,0)}$.

Solution. Since all four entries of the Jacobi matrix $D f(x, y)$ are continuous functions, and since $D f(0,0)$ is non-singular, the assertion is true.
(4) Find the inverse $(D f(0,0))^{-1}$ of the non-singular Jacobi matrix $D f(0,0)$.

Solution. We find that

$$
(D f(0,0))^{-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(5) Solve the equation

$$
\binom{u}{v}=f(0,0)+D f(0,0)\binom{x}{y}
$$

with respect to

$$
\binom{x}{y} .
$$

Solution. We find that

$$
\begin{gathered}
\binom{u}{v}=f(0,0)+D f(0,0)\binom{x}{y} \Leftrightarrow \\
\binom{u-1}{v-1}=D f(0,0)\binom{x}{y} \Leftrightarrow \\
\binom{x}{y}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{u-1}{v-1} \Leftrightarrow x=v-1 \wedge y=u-1 .
\end{gathered}
$$

(6) Show that the vector valued function $g: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by the rule

$$
\forall(x, y) \in \mathbf{R}^{2}: g(x, y)=f(0,0)+D f(0,0)\binom{x}{y}
$$

has no fixed points.
Solution. If the point (x, y) were a fixed point of the function g we would find that

$$
x=y-1 \wedge y=x-1 \Rightarrow x=x-2 \Leftrightarrow 0=-2 .
$$

Problem 4. We consider and the function $F: \mathbf{R}^{3} \rightarrow \mathbf{R}$ given by the rule

$$
\forall(t, x, y) \in \mathbf{R}^{3}: F(t, x, y)=y^{2}+\left(1+t^{2}\right) x .
$$

Furthermore, we consider the functional

$$
I(x)=\int_{0}^{1}\left(\left(\frac{d x}{d t}\right)^{2}+\left(1+t^{2}\right) x\right) d t
$$

(1) Show that for every $t \in \mathbf{R}$ the function $F=F(t, x, y)$ is convex in $(x, y) \in \mathbf{R}^{2}$.

Solution. We find that

$$
\frac{\partial F}{\partial x}=1+t^{2} \text { and } \frac{\partial F}{\partial y}=2 y
$$

and that the Hessian matrix of the function F is

$$
F^{\prime \prime}=\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right) .
$$

This matrix is positive semidefinite and hence the function F is a convex function of $(x, y) \in \mathbf{R}^{2}$.
(2) Solve the variational problem: Determine the minimum function $x^{*}=$ $x^{*}(t)$ of the functional $I(x)$ subject to the conditions

$$
x^{*}(0)=3 \text { and } x^{*}(1)=\frac{1}{24} .
$$

Solution. Since the function F is a convex function of $(x, y) \in \mathbf{R}^{2}$ we know that the given variational problem is a minimum problem.

The Euler differential equation is:

$$
\begin{gathered}
\frac{\partial F}{\partial x}-\frac{d}{d t}\left(\frac{\partial F}{\partial \dot{x}}\right)=0 \Leftrightarrow 1+t^{2}-2 \frac{d^{2} x}{d t^{2}}=0 \Leftrightarrow \\
\frac{d^{2} x}{d t^{2}}=\frac{1}{2}+\frac{1}{2} t^{2} .
\end{gathered}
$$

Now we find that

$$
\frac{d x}{d t}=\frac{1}{2} t+\frac{1}{6} t^{3}+c_{1}
$$

and that

$$
x=\frac{1}{4} t^{2}+\frac{1}{24} t^{4}+c_{1} t+c_{2},
$$

where $c_{1}, c_{2} \in \mathbf{R}$.
From the two given conditions

$$
x^{*}(0)=3 \text { and } x^{*}(1)=\frac{1}{24}
$$

we find that $c_{1}=-\frac{13}{4}$ and that $c_{2}=3$.
Then we have that

$$
x^{*}=x^{*}(t)=\frac{1}{4} t^{2}+\frac{1}{24} t^{4}-\frac{13}{4} t+3 .
$$

